Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(2): e0329123, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38189279

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages of the Omicron variant rapidly became dominant in early 2022 and frequently cause human infections despite vaccination or prior infection with other variants. In addition to antibody-evading mutations in the receptor-binding domain, Omicron features amino acid mutations elsewhere in the Spike protein; however, their effects generally remain ill defined. The Spike D796Y substitution is present in all Omicron sub-variants and occurs at the same site as a mutation (D796H) selected during viral evolution in a chronically infected patient. Here, we map antibody reactivity to a linear epitope in the Spike protein overlapping position 796. We show that antibodies binding this region arise in pre-Omicron SARS-CoV-2 convalescent and vaccinated subjects but that both D796Y and D796H abrogate their binding. These results suggest that D796Y contributes to the fitness of Omicron in hosts with pre-existing immunity to other variants of SARS-CoV-2 by evading antibodies targeting this site.IMPORTANCESevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved substantially through the coronavirus disease 2019 (COVID-19) pandemic: understanding the drivers and consequences of this evolution is essential for projecting the course of the pandemic and developing new countermeasures. Here, we study the immunological effects of a particular mutation present in the Spike protein of all Omicron strains and find that it prevents the efficient binding of a class of antibodies raised by pre-Omicron vaccination and infection. These findings reveal a novel consequence of a poorly understood Omicron mutation and shed light on the drivers and effects of SARS-CoV-2 evolution.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Glicoproteína da Espícula de Coronavírus , Mutação , Anticorpos Antivirais , Anticorpos Neutralizantes
2.
Front Vet Sci ; 10: 1166101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215472

RESUMO

Susceptibility to and infection with SARS-CoV-2 in companion animals has been well-documented throughout the COVID-19 pandemic. Surveillance for the virus in dogs has largely been focused on household pets; however, other canine populations may also be impacted. We partnered with a local veterinary hospital with a high working dog patient volume to conduct viral and neutralizing antibody testing in working dogs and identify potential risk factors in the dog's work and home environments. Surveillance of SARS-CoV-2 in law enforcement and security working dogs in Arizona found 24.81% (32/129) of dogs to be seropositive. Thirteen dogs presenting with clinical signs or with reported exposure to COVID-19 in the 30 days prior to sample collection were also tested by PCR; all samples were negative. 90.7% (n = 117) of dogs were reported to be asymptomatic or have no change in performance at the time of sampling. Two dogs (1.6%) had suspected anosmia as reported by their handlers; one of which was seropositive. Known exposure to the dog's COVID-19 positive handler or household member was identified as a significant risk factor. Demographics factors including sex, altered status, and type of work were not associated with canine seropositivity. Further work is warranted to understand the impact of SARS-CoV-2 and other infectious diseases in working dogs.

3.
Immunohorizons ; 7(5): 333-352, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37195872

RESUMO

Links between repeated microbial infections and B cell chronic lymphocytic leukemia (B-CLL) have been proposed but not tested directly. This study examines how prolonged exposure to a human fungal pathogen impacts B-CLL development in Eµ-hTCL1-transgenic mice. Monthly lung exposure to inactivated Coccidioides arthroconidia, agents of Valley fever, altered leukemia development in a species-specific manner, with Coccidioides posadasii hastening B-CLL diagnosis/progression in a fraction of mice and Coccidioides immitis delaying aggressive B-CLL development, despite fostering more rapid monoclonal B cell lymphocytosis. Overall survival did not differ significantly between control and C. posadasii-treated cohorts but was significantly extended in C. immitis-exposed mice. In vivo doubling time analyses of pooled B-CLL showed no difference in growth rates of early and late leukemias. However, within C. immitis-treated mice, B-CLL manifests longer doubling times, as compared with B-CLL in control or C. posadasii-treated mice, and/or evidence of clonal contraction over time. Through linear regression, positive relationships were noted between circulating levels of CD5+/B220low B cells and hematopoietic cells previously linked to B-CLL growth, albeit in a cohort-specific manner. Neutrophils were positively linked to accelerated growth in mice exposed to either Coccidioides species, but not in control mice. Conversely, only C. posadasii-exposed and control cohorts displayed positive links between CD5+/B220low B cell frequency and abundance of M2 anti-inflammatory monocytes and T cells. The current study provides evidence that chronic lung exposure to fungal arthroconidia affects B-CLL development in a manner dependent on fungal genotype. Correlative studies suggest that fungal species differences in the modulation of nonleukemic hematopoietic cells are involved.


Assuntos
Coccidioidomicose , Leucemia Linfocítica Crônica de Células B , Animais , Camundongos , Humanos , Coccidioides/genética , Pulmão , Camundongos Transgênicos
4.
Nat Commun ; 14(1): 1783, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997517

RESUMO

Current methods for detecting infections either require a sample collected from an actively infected site, are limited in the number of agents they can query, and/or yield no information on the immune response. Here we present an approach that uses temporally coordinated changes in highly-multiplexed antibody measurements from longitudinal blood samples to monitor infection events at sub-species resolution across the human virome. In a longitudinally-sampled cohort of South African adolescents representing >100 person-years, we identify >650 events across 48 virus species and observe strong epidemic effects, including high-incidence waves of Aichivirus A and the D68 subtype of Enterovirus D earlier than their widespread circulation was appreciated. In separate cohorts of adults who were sampled at higher frequency using self-collected dried blood spots, we show that such events temporally correlate with symptoms and transient inflammatory biomarker elevations, and observe the responding antibodies to persist for periods ranging from ≤1 week to >5 years. Our approach generates a rich view of viral/host dynamics, supporting novel studies in immunology and epidemiology.


Assuntos
Enterovirus Humano D , Infecções por Enterovirus , Epidemias , Vírus , Adulto , Adolescente , Humanos , Viroma , Anticorpos Antivirais
5.
J Fungi (Basel) ; 9(1)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36675936

RESUMO

Coccidioides immitis and Coccidioides posadasii are soil-dwelling fungi of arid regions in North and South America that are responsible for Valley fever (coccidioidomycosis). Forty percent of patients with Valley fever exhibit symptoms ranging from mild, self-limiting respiratory infections to severe, life-threatening pneumonia that requires treatment. Misdiagnosis as bacterial pneumonia commonly occurs in symptomatic Valley fever cases, resulting in inappropriate treatment with antibiotics, increased medical costs, and delay in diagnosis. In this proof-of-concept study, we explored the feasibility of developing breath-based diagnostics for Valley fever using a murine lung infection model. To investigate potential volatile biomarkers of Valley fever that arise from host−pathogen interactions, we infected C57BL/6J mice with C. immitis RS (n = 6), C. posadasii Silveira (n = 6), or phosphate-buffered saline (n = 4) via intranasal inoculation. We measured fungal dissemination and collected bronchoalveolar lavage fluid (BALF) for cytokine profiling and for untargeted volatile metabolomics via solid-phase microextraction (SPME) and two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC-TOFMS). We identified 36 volatile organic compounds (VOCs) that were significantly correlated (p < 0.05) with cytokine abundance. These 36 VOCs clustered mice by their cytokine production and were also able to separate mice with moderate-to-high cytokine production by infection strain. The data presented here show that Coccidioides and/or the host produce volatile metabolites that may yield biomarkers for a Valley fever breath test that can detect coccidioidal infection and provide clinically relevant information on primary pulmonary disease severity.

6.
Nat Protoc ; 18(2): 396-423, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36385198

RESUMO

PepSeq is an in vitro platform for building and conducting highly multiplexed proteomic assays against customizable targets by using DNA-barcoded peptides. Starting with a pool of DNA oligonucleotides encoding peptides of interest, this protocol outlines a fully in vitro and massively parallel procedure for synthesizing the encoded peptides and covalently linking each to a corresponding cDNA tag. The resulting libraries of peptide/DNA conjugates can be used for highly multiplexed assays that leverage high-throughput sequencing to profile the binding or enzymatic specificities of proteins of interest. Here, we describe the implementation of PepSeq for fast and cost-effective epitope-level analysis of antibody reactivity across hundreds of thousands of peptides from <1 µl of serum or plasma input. This protocol includes the design of the DNA oligonucleotide library, synthesis of DNA-barcoded peptide constructs, binding of constructs to sample, preparation for sequencing and data analysis. Implemented in this way, PepSeq can be used for a number of applications, including fine-scale mapping of antibody epitopes and determining a subject's pathogen exposure history. The protocol is divided into two main sections: (i) design and synthesis of DNA-barcoded peptide libraries and (ii) use of libraries for highly multiplexed serology. Once oligonucleotide templates are in hand, library synthesis takes 1-2 weeks and can provide enough material for hundreds to thousands of assays. Serological assays can be conducted in 96-well plates and generate sequencing data within a further ~4 d. A suite of software tools, including the PepSIRF package, are made available to facilitate the design of PepSeq libraries and analysis of assay data.


Assuntos
Biblioteca de Peptídeos , Proteômica , DNA/genética , Peptídeos/genética , Oligonucleotídeos/genética , Anticorpos
7.
mSphere ; 7(5): e0035222, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-35972134

RESUMO

Coccidioides immitis and Coccidioides posadasii are the etiological agents of coccidioidomycosis (Valley fever [VF]). Disease manifestation ranges from mild pneumonia to chronic or extrapulmonary infection. If diagnosis is delayed, the risk of severe disease increases. In this report, we investigated the intersection of pathogen, host, and environment for VF cases in Northern Arizona (NAZ), where the risk of acquiring the disease is much lower than in Southern Arizona. We investigated reported cases and assessed pathogen origin by comparing genomes of NAZ clinical isolates to isolates from other regions. Lastly, we surveyed regional soils for presence of Coccidioides. We found that cases of VF increased in NAZ in 2019, and Coccidioides NAZ isolates are assigned to Arizona populations using phylogenetic inference. Importantly, we detected Coccidioides DNA in NAZ soil. Given recent climate modeling of the disease that predicts that cases will continue to increase throughout the region, and the evidence presented in this report, we propose that disease awareness outreach to clinicians throughout the western United States is crucial for improving patient outcomes, and further environmental sampling across the western U.S. is warranted. IMPORTANCE Our work is the first description of the Valley fever disease triangle in Northern Arizona, which addresses the host, the pathogen, and the environmental source in the region. Our data suggest that the prevalence of diagnosed cases rose in 2019 in this region, and some severe cases necessitate hospitalization. We present the first evidence of Coccidioides spp. in Northern Arizona soils, suggesting that the pathogen is maintained in the local environment. Until disease prevention is an achievable option via vaccination, we predict that incidence of Valley fever will rise in the area. Therefore, enhanced awareness of and surveillance for coccidioidomycosis is vital to community health in Northern Arizona.


Assuntos
Coccidioidomicose , Humanos , Estados Unidos , Coccidioidomicose/epidemiologia , Arizona/epidemiologia , Filogenia , Incidência , Solo
8.
Cell Rep ; 40(1): 111022, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35753310

RESUMO

The COVID-19 pandemic has triggered the first widespread vaccination campaign against a coronavirus. Many vaccinated subjects are previously naive to SARS-CoV-2; however, almost all have previously encountered other coronaviruses (CoVs), and the role of this immunity in shaping the vaccine response remains uncharacterized. Here, we use longitudinal samples and highly multiplexed serology to identify mRNA-1273 vaccine-induced antibody responses against a range of CoV Spike epitopes, in both phylogenetically conserved and non-conserved regions. Whereas reactivity to SARS-CoV-2 epitopes shows a delayed but progressive increase following vaccination, we observe distinct kinetics for the endemic CoV homologs at conserved sites in Spike S2: these become detectable sooner and decay at later time points. Using homolog-specific antibody depletion and alanine-substitution experiments, we show that these distinct trajectories reflect an evolving cross-reactive response that can distinguish rare, polymorphic residues within these epitopes. Our results reveal mechanisms for the formation of antibodies with broad reactivity against CoVs.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Vacina de mRNA-1273 contra 2019-nCoV , Anticorpos Antivirais , Formação de Anticorpos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Epitopos , Humanos , Pandemias , SARS-CoV-2 , Vacinação
9.
G3 (Bethesda) ; 12(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35137016

RESUMO

Coccidioidomycosis is a common fungal disease that is endemic to arid and semi-arid regions of both American continents. Coccidioides immitis and Coccidioides posadasii are the etiological agents of the disease, also known as Valley Fever. For several decades, the C. posadasii strain Silveira has been used widely in vaccine studies, is the source strain for production of diagnostic antigens, and is a widely used experimental strain for functional studies. In 2009, the genome was sequenced using Sanger sequencing technology, and a draft assembly and annotation were made available. In this study, the genome of the Silveira strain was sequenced using single molecule real-time sequencing PacBio technology, assembled into chromosomal-level contigs, genotyped, and the genome was reannotated using sophisticated and curated in silico tools. This high-quality genome sequencing effort has improved our understanding of chromosomal structure, gene set annotation, and lays the groundwork for identification of structural variants (e.g. transversions, translocations, and copy number variants), assessment of gene gain and loss, and comparison of transposable elements in future phylogenetic and population genomics studies.


Assuntos
Coccidioides , Coccidioidomicose , Sequência de Bases , Coccidioides/genética , Coccidioidomicose/diagnóstico , Coccidioidomicose/epidemiologia , Coccidioidomicose/genética , Humanos , Filogenia
10.
medRxiv ; 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35118479

RESUMO

The COVID-19 pandemic has triggered the first widespread vaccination campaign against a coronavirus. Most vaccinated subjects are naïve to SARS-CoV-2, however almost all have previously encountered other coronaviruses (CoVs) and the role of this immunity in shaping the vaccine response remains uncharacterized. Here we use longitudinal samples and highly-multiplexed serology to identify mRNA-1273 vaccine-induced antibody responses against a range of CoV Spike epitopes and in both phylogenetically conserved and non-conserved regions. Whereas reactivity to SARS-CoV-2 epitopes showed a delayed but progressive increase following vaccination, we observed distinct kinetics for the endemic CoV homologs at two conserved sites in Spike S2: these became detectable sooner, and decayed at later timepoints. Using homolog-specific depletion and alanine-substitution experiments, we show that these distinctly-evolving specificities result from cross-reactive antibodies as they mature against rare, polymorphic residues within these epitopes. Our results reveal mechanisms for the formation of antibodies with broad reactivity against CoVs.

11.
Front Immunol ; 12: 735584, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917073

RESUMO

Common approaches for monitoring T cell responses are limited in their multiplexity and sensitivity. In contrast, deep sequencing of the T Cell Receptor (TCR) repertoire provides a global view that is limited only in terms of theoretical sensitivity due to the depth of available sampling; however, the assignment of antigen specificities within TCR repertoires has become a bottleneck. This study combines antigen-driven expansion, deep TCR sequencing, and a novel analysis framework to show that homologous 'Clusters of Expanded TCRs (CETs)' can be confidently identified without cell isolation, and assigned to antigen against a background of non-specific clones. We show that clonotypes within each CET respond to the same epitope, and that protein antigens stimulate multiple CETs reactive to constituent peptides. Finally, we demonstrate the personalized assignment of antigen-specificity to rare clones within fully-diverse uncultured repertoires. The method presented here may be used to monitor T cell responses to vaccination and immunotherapy with high fidelity.


Assuntos
Separação Celular/métodos , Técnicas Imunológicas/métodos , Receptores de Antígenos de Linfócitos T/análise , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Humanos
12.
Curr Clin Microbiol Rep ; 8(3): 114-128, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367880

RESUMO

PURPOSE OF REVIEW: Coccidioidomycosis is an infectious disease that gained clinical significance in the early 20th century. Many of the foundational contributions to coccidioidomycosis research, including the discovery of the fungal disease agent, Coccidioides spp., were made by women. We review recent progress in Coccidioides research and big questions remaining in the field, while highlighting some of the contributions from women. RECENT FINDINGS: New molecular-based techniques provide a promising method for detecting Coccidioides, which can help determine the dominate reservoir host and ideal environmental conditions for growth. Genetic and genomic analyses have allowed an understanding of population structure, species level diversity, and evolutionary histories. We present a current, comprehensive genome list, where women contributed many of these entries. Several efforts to develop a coccidioidomycosis vaccine are underway. SUMMARY: Women continue to pioneer research on Coccidioides, including the relationships between the fungi and the environment, genetics, and clinical observations. Significant questions remain in the field of Coccidioides, including the main host reservoir, the relationships between genotypic and phenotypic variation, and the underlying cause for chronic clinical coccidioidomycosis cases.

13.
mSphere ; 6(2)2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33853870

RESUMO

Valley fever (coccidioidomycosis) is an endemic fungal pneumonia of the North and South American deserts. The causative agents of Valley fever are the dimorphic fungi Coccidioides immitis and C. posadasii, which grow as mycelia in the environment and as spherules within the lungs of vulnerable hosts. Current diagnostics for Valley fever are severely lacking due to poor sensitivity and invasiveness, contributing to a 23-day median time to diagnosis, and therefore, new diagnostic tools are needed. We are working toward the development of a breath-based diagnostic for coccidioidomycosis, and in this initial study, we characterized the volatile metabolomes (or volatilomes) of in vitro cultures of Coccidioides Using solid-phase microextraction (SPME) and comprehensive two-dimensional gas chromatography coupled to time of flight mass spectrometry (GC×GC-TOFMS), we characterized the volatile organic compounds (VOCs) produced by six strains of each species during mycelial or spherule growth. We detected a total of 353 VOCs that were at least 2-fold more abundant in a Coccidioides culture than in medium controls and found that the volatile metabolome of Coccidioides is more dependent on the growth phase (spherules versus mycelia) than on the species. The volatile profiles of C. immitis and C. posadasii have strong similarities, indicating that a single suite of Valley fever breath biomarkers can be developed to detect both species.IMPORTANCE Coccidioidomycosis, or Valley fever, causes up to 30% of community-acquired pneumonias in highly populated areas of the U.S. desert southwest where the disease is endemic. The infection is difficult to diagnose by standard serological and histopathological methods, which delays appropriate treatment. Therefore, we are working toward the development of breath-based diagnostics for Valley fever. In this study, we characterized the volatile metabolomes (or volatilomes) of six strains each of Coccidioides immitis and C. posadasii, the dimorphic fungal species that cause Valley fever. By analyzing the volatilomes during the two modes of growth of the fungus-mycelia and spherules-we observed that the life cycle plays a significant role in the volatiles produced by Coccidioides In contrast, we observed no significant differences in the C. immitis versus C. posadasii volatilomes. These data suggest that life cycle, rather than species, should guide the selection of putative biomarkers for a Valley fever breath test.


Assuntos
Coccidioides/crescimento & desenvolvimento , Coccidioides/metabolismo , Estágios do Ciclo de Vida , Metaboloma , Compostos Orgânicos Voláteis/análise , Biomarcadores/metabolismo , Testes Respiratórios/métodos , Coccidioides/classificação , Coccidioidomicose/microbiologia , Meios de Cultura/química , Humanos , Micélio/crescimento & desenvolvimento , Micélio/metabolismo
14.
J Fungi (Basel) ; 6(4)2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33327629

RESUMO

Coccidioidomycosis, or Valley fever, is caused by two species of dimorphic fungi. Based on molecular phylogenetic evidence, the genus Coccidioides contains two reciprocally monophyletic species: C. immitis and C. posadasii. However, phenotypic variation between species has not been deeply investigated. We therefore explored differences in growth rate under various conditions. A collection of 39 C. posadasii and 46 C. immitis isolates, representing the full geographical range of the two species, was screened for mycelial growth rate at 37 °C and 28 °C on solid media. The radial growth rate was measured for 16 days on yeast extract agar. A linear mixed effect model was used to compare the growth rate of C. posadasii and C. immitis at 37 °C and 28 °C, respectively. C. posadasii grew significantly faster at 37 °C, when compared to C. immitis; whereas both species had similar growth rates at 28 °C. These results indicate thermotolerance differs between these two species. As the ecological niche has not been well-described for Coccidioides spp., and disease variability between species has not been shown, the evolutionary pressure underlying the adaptation is unclear. However, this research reveals the first significant phenotypic difference between the two species that directly applies to ecological research.

15.
Curr Protoc Microbiol ; 58(1): e113, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32894648

RESUMO

Coccidioidomycosis ("Valley fever") is caused by Coccidioides immitis and C. posadasii. These fungi are thermally dimorphic, cycling between mycelia and arthroconidia in the environment and converting into spherules and endospores within a host. Coccidioides can cause a broad spectrum of disease that can be difficult to treat. There has been a steady increase in disease, with an estimated 350,000 new infections per year in the United States. With the increase in disease and difficulty in treatment, there is an unmet need to increase research in basic biology and identify new treatments, diagnostics, and vaccine candidates. Here, we describe protocols required in any Coccidioides laboratory, such as growing, harvesting, and storing the different stages of this dimorphic fungal pathogen. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Growth and harvest of liquid mycelia cultures for extractions Alternate Protocol 1: Large-volume growth and harvest of liquid mycelia cultures Basic Protocol 2: Mycelial growth on solid medium Alternate Protocol 2: Maintaining mycelial growth on solid medium Basic Protocol 3: Harvesting and quantification of arthroconidia Alternate Protocol 3: Long-term storage of arthroconidia Basic Protocol 4: Parasitic spherule growth and harvest Alternate Protocol 4: Obtaining endospores from spherules Basic Protocol 5: Intranasal infection of murine models.


Assuntos
Coccidioides/crescimento & desenvolvimento , Coccidioidomicose/microbiologia , Meios de Cultura , Técnicas Microbiológicas/métodos , Preservação Biológica/métodos , Esporos Fúngicos/crescimento & desenvolvimento , Animais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Modelos Animais , Equipamento de Proteção Individual
16.
Med Mycol ; 57(4): 478-488, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30053114

RESUMO

The disease San Joaquin Valley Fever (coccidioidomycosis) is caused by the inhalation of Coccidioides arthroconidia. In vivo, arthroconidia transform into pathogenic structures termed spherules. Exposure to the host milieu triggers spherule development; however, the molecular mechanisms responsible for the morphological shift are not well characterized. This study compared the morphogenesis of five strains of both species of Coccidioides in two media types to improve the in vitro model of dimorphism that can be easily reproduced, and is amenable to tissue culture. We also sought to establish a modern record of the morphological switch among commonly used lab strains through a detailed account of growth under various conditions. Spherules from five strains were grown in standard (Converse) and experimental media (RPMI-sph). Strain behavior was quantified by median spherule size and spherule concentration, beginning 3 days after inoculation and followed for 10 days of growth. There were significant differences observed among Coccidioides immitis and C. posadasii strains, as well as differences between the in vitro systems.


Assuntos
Coccidioides/citologia , Coccidioides/crescimento & desenvolvimento , Animais , Células Cultivadas , Meios de Cultura/química , Macrófagos/microbiologia , Camundongos , Microscopia Eletrônica de Varredura , Fatores de Tempo
17.
Appl Biosaf ; 24(3): 123-128, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33833621

RESUMO

INTRODUCTION: The difficulty involved in obtaining sufficient intact genomic deoxyribonucleic acid (DNA) from Coccidioides spp for downstream applications using published protocols prompted the exploration of inactivating mycelia and arthroconidia using heat under biosafety level 3 containment. This was followed by optimizing DNA extraction from mycelia using various methods at lower containment. METHODS: Various exposure times and temperatures were examined to identify an effective heat inactivation procedure for arthroconidia and mycelia from both C immitis and C posadasii. Heat inactivation of mycelia was followed by DNA extraction using 2 commercially available kits, as well as a phenol:chloroform-based extraction procedure to determine DNA integrity and quantity among extraction methods using both live and heat-inactivated mycelia. RESULTS: Ten-minute and 30-minute exposure times at 80°C were sufficient to inactivate Coccidioides spp arthroconidia and mycelia, respectively. DNA yield between live versus heat-inactivated mycelia was similar for each extraction procedure. However, DNA obtained using phenol:chloroform was of higher quantity and integrity compared with DNA obtained using the commercially available kits, which was highly fragmented. CONCLUSION: The ability to heat-inactivate Coccidioides cultures for processing at a lower level of containment greatly increased the efficiency of DNA extractions. Therefore, this is an ideal method for obtaining Coccidioides spp DNA and inactivated arthroconidia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...